

# 中华人民共和国国家计量技术规范

JJF xxx—202x

# 眼科光学生物测量仪校准规范

Calibration Specification for Ophthalmic Optical Biometer (征求意见稿)

202x-xx-xx 发布

202x-xx-xx 实施

国家市场监督管理总局发布

# 眼科光学生物测量仪 校准规范

**Calibration Specification for Ophthalmic** 

**Optical Biometer** 

**JJF xxxx—202x** 

归 口 单 位 : 全国医学计量技术委员会

主要起草单位: 中国计量科学研究院

山东省计量科学研究院

参加起草单位: 复旦大学附属眼耳鼻喉科医院

本规范委托全国医学计量技术委员会负责解释

# 本规范主要起草人:

段亮成(中国计量科学研究院)

胡志雄(中国计量科学研究院)

刘文丽(中国计量科学研究院)

# 参加起草人:

李修宇(山东省计量科学研究院)

酆 扬(山东省计量科学研究院)

黄锦海 (复旦大学附属眼耳鼻喉科医院)

周行涛(复旦大学附属眼耳鼻喉科医院)

# 目 录

| 引 言                                                       |     | <br>            | . 11 |
|-----------------------------------------------------------|-----|-----------------|------|
| 1. 范围                                                     |     | <br>. <b></b> . | 1    |
| 2. 引用文件                                                   |     | <br>. <b></b> . | 1    |
| 3. 术语                                                     |     |                 |      |
| 4. 概述                                                     |     |                 |      |
| 5. 计量特性                                                   |     |                 |      |
| 6. 校准条件                                                   |     |                 |      |
| 6.1 校准条件                                                  |     |                 |      |
| 6.2 测量标准及其他设备                                             |     |                 |      |
| 7. 校准项目与校准方法                                              |     |                 |      |
| 7.1 外观及功能性检查                                              |     |                 |      |
| 7.2 眼轴长测量误差                                               |     |                 |      |
| 7.3 中央角膜厚度或晶状体厚度测量误差                                      |     |                 |      |
| 7.3 中关用展序及或晶状体序及侧重 庆左···································· |     |                 |      |
|                                                           |     |                 |      |
| 7.5 白到白距离或瞳孔直径测量误差                                        |     |                 |      |
| 8 校准结果表达                                                  |     |                 |      |
| 8.1 校准记录                                                  |     |                 |      |
| 8.2 校准结果的处理                                               |     |                 |      |
| 9 复校时间间隔                                                  |     |                 |      |
| 附录 A 校准原始记录(推荐)格式                                         |     |                 |      |
| 附录 B 校准证书(内页)参考格式                                         |     | <br>            | . 10 |
| 附录 C 眼轴长测量最大允许误差不确定度评定示例                                  |     | <br>            | . 11 |
| 附录D中央角膜厚度或晶状体厚度测量最大允许误差不确定度评算                             | 定示例 | <br>            | . 15 |
| 附录 E 前房深度测量最大允许误差不确定度评定示例                                 |     | <br>            | . 19 |
| 附录 F 白到白距离或瞳孔直径测量最大允许误差不确定度评定示例                           | 列   | <br>. <b></b> . | . 22 |

# 引言

JJF 1001《通用计量术语及定义》、JJF 1071《国家计量校准规范编写规则》、JJF 1059.1 《测量不确定度评定与表示》共同构成支撑本规范制定工作的基础性系列文件。

本规范的制定主要参考了国际标准 ISO 22665: 2012《眼科光学和仪器 眼轴长测量仪器》(Ophthalmic optics and instruments - Instruments to measure axial distances in the eye)。

本规范为首次发布。

# 眼科光学生物测量仪校准规范

### 1. 范围

本规范适用于眼科光学生物测量仪的校准。

# 2. 引用文件

本规范引用了下列文件:

ISO 22665: 2012 眼科光学和仪器-眼轴长测量仪器(Ophthalmic optics and instruments - Instruments to measure axial distances in the eye)

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件, 其最新版本(包括所有的修改单)适用于本规范。

### 3. 术语

ISO 22665: 2012 界定的及下列术语和定义适用于本规范。

3.1 眼轴长 axial length (AL)

沿人眼眼轴方向,从角膜前表面到视网膜色素上皮细胞(RPE)之间的距离。 [来源: ISO 22665:2012, 3.1, 有修改]

3.2 群折射率 group refractive index

光在真空中的传播速率( $c_0$ )和光在介质或者生物组织中的传播速率( $c_g$ )之间的比值  $c_0/c_g$ 。

[来源: ISO 22665:2012, 3.5]

3.3 光学生物测量 optical biometry

使用光学方法测量人眼各部分的几何参数。

「来源: ISO 22665:2012 3.7, 有修改]

3.4 中央角膜厚度 central corneal thickness (CCT)

沿眼轴方向,从角膜前表面顶点到其后表面顶点之间的距离。

3.5 前房深度 anterior chamber depth(ACD)

沿眼轴方向,从角膜后表面顶点到晶状体前表面顶点之间的距离。

1

3.6 晶状体厚度 lens thickness (LT)

沿眼轴方向,从晶状体前表面顶点到其后表面顶点之间的距离。

3.7 白到白距离 white to white (WTW)

沿眼球前表面水平方向,从角膜一侧最边缘到另一侧最边缘位置之间的距离。

3.8 瞳孔直径 pupil diameter (PD)

人眼虹膜中心小圆孔的直径。

## 4. 概述

眼科光学生物测量仪是基于光学低相干或部分相干干涉原理的眼科测量设备,用于测量人眼的眼球参数,一般包括:眼轴长度、角膜厚度、前房深度、白到白距离和瞳孔直径等。眼科光学生物测量仪通常由光源、干涉光路、目视观察系统、光电探测器、数据采集和处理系统以及图像显示系统组成。

### 5. 计量特性

眼科光学生物测量仪的计量特性要求见表 1。

指标参数 最大允许误差
眼轴长 ±100 μm
角膜厚度 ±5 μm
前房深度 ±26 μm
晶状体厚度 ±18 μm
白到白距离 ±100 μm
瞳孔直径 ±100 μm

表 1 眼科光学生物测量仪的计量特性要求

注1: 以上指标不用于合格性判定,仅供参考。

# 6. 校准条件

#### 6.1 校准条件

- (a) 环境温度: (20±5) ℃;
- (b) 相对湿度: ≤85%;
- (c) 照明条件: 周围无影响设备正常工作的强光干扰;
- (d) 其他条件: 周围无影响设备正常工作的强磁场干扰和机械振动。

#### 6.2 测量标准及其他设备

眼科光学生物测量仪校准装置,由眼轴长模拟眼、眼前节轴向模拟眼和眼前节横向模拟眼组成。具体技术要求见表 2。

| 设备名称          | 测量装置         | 相关技术要求                                                                             |
|---------------|--------------|------------------------------------------------------------------------------------|
| 眼科光学生物测量仪校准装置 | 眼轴长模拟眼       | 几何轴长范围: (15~30) mm, <i>U</i> =10 μm ( <i>k</i> =2);<br>群折射率,MPE 为±0.001            |
|               |              | 角膜厚度:<br>几何厚度范围: (0.2~0.9) mm, <i>U</i> =2 μm ( <i>k</i> =2)<br>群折射率,MPE 为±0.001   |
|               | 眼前节轴向<br>模拟眼 | 前房深度空气隙:<br>几何厚度范围: (1.3~9.4) mm, <i>U</i> =5 μm ( <i>k</i> =2)                    |
|               |              | 晶状体厚度:<br>几何厚度范围: (0.25~7.6) mm, <i>U</i> =5 μm ( <i>k</i> =2)<br>群折射率,MPE 为±0.001 |
|               | 眼前节横向<br>模拟眼 | 白到白距离:<br>直径范围: (7~14) mm, <i>U</i> =10 μm ( <i>k</i> =2)                          |
|               |              | 瞳孔直径:<br>直径范围: (1~10) mm, <i>U</i> =10 μm ( <i>k</i> =2)                           |

表 2 测量标准的技术要求

注: 群折射率为在被校仪器测量光源中心波长下的值。

# 7. 校准项目与校准方法

#### 7.1 外观及功能性检查

## 7.1.1 外观和标志

眼科光学生物测量仪(以下简称"被校仪器")不应有影响工作性能的机械损伤,所有旋钮、开关、按键等功能正常,可灵活操作并有明显的、清晰的、完整的文字和符号说明。应标明产品名称、型号、制造厂、出厂编号、出厂日期、电源规格等基本仪器信息。

#### 7.1.2 功能性检查

被校仪器正常开机后,将任一眼轴长模拟眼放置于人眼测量位置,图像显示区应能正常观测到图像。

#### 7.2 眼轴长测量误差

依次将3个眼轴长模拟眼放置于人眼测量位置,被校仪器调至模拟眼测量模式(如

有)或有晶状体人眼测量模式,重复测量 10 次,读取眼轴长测量值,取平均为  $L_{ind}$ ,按照制造商的测量模型换算成被校仪器测量眼轴长模拟眼的光程值( $L_{opt}$ )。并根据公式(1)计算对应眼轴长模拟眼实际几何轴长值( $L_{true}$ ),被校仪器眼轴长测量误差由公式(2)计算。

$$L_{true} = \frac{L_{opt}}{n_a} \tag{1}$$

$$\delta_L = L_{true} - L_0 \tag{2}$$

式中:

 $L_{true}$ 一被校仪器测量眼轴长模拟眼对应的实际几何轴长值, mm;

 $L_{ont}$ 一被校仪器测量眼轴长模拟眼的光程值,mm;

 $n_q$ 一眼轴长模拟眼材料的群折射率值(被校仪器光源中心波长下)。

 $\delta_{l}$ 一被校仪器眼轴长测量误差,mm;

 $L_0$ 一眼轴长模拟眼轴长的标准值,mm;

注:制造商应明确给出设备测量值 Lind 所对应的测量光程值 Lopt。

# 7.3 中央角膜厚度或晶状体厚度测量误差

分别将 2 个眼前节轴向模拟眼置于人眼测量位置,被校仪器调至眼前节测量模式,重复测量 10 次,读取角膜厚度或晶状体厚度测量值,取平均为  $T_{ind}$ ,按照制造商的测量模型换算成被校仪器测量的角膜厚度或晶状体厚度光程值( $T_{opt}$ ),并根据公式(3)计算对应的角膜或晶状体实际几何厚度值( $T_{true}$ ),被校仪器中央角膜厚度或晶状体厚度测量误差由公式(4)计算。

$$T_{true} = \frac{T_{opt}}{n_g} \tag{3}$$

$$\delta_T = T_{true} - T_0 \tag{4}$$

式中:

 $T_{true}$ 一被校仪器测量眼前节轴向模拟眼对应的角膜或晶状体实际几何厚度值,mm;  $T_{ont}$ 一被校仪器测量眼前节轴向模拟眼的角膜或晶状体厚度光程值,mm;

 $n_q$ 一模拟眼材料的群折射率值(被校仪器光源中心波长下)。

 $\delta_{T}$ 一被校仪器角膜或晶状体厚度测量误差,mm;

 $T_0$ 一眼前节轴向模拟眼角膜或晶状体厚度的标准值, mm;

注:制造商应明确给出设备测量值 Tind 所对应的测量光程值 Topt。

## 7.4 前房深度测量误差

分别将 2 个眼前节轴向模拟眼置于人眼测量位置,被校仪器调至眼前节测量模式,重复测量 10 次,记录前房深度测量值,取平均为  $T_{inda}$ 。按照制造商的测量模型换算成被校仪器测量的前房深度光程值( $T_{opta}$ ),并根据公式(5)计算对应的前房深度实际几何厚度值( $T_{truea}$ ),被校仪器中央角膜厚度或晶状体厚度测量误差由公式(6)计算。。

$$T_{truea} = \frac{T_{opta}}{n_{air}} \tag{5}$$

$$\delta_{Ta} = T_{opta} - T_{0a} \tag{6}$$

式中:

 $T_{truea}$ 一被校仪器测量眼前节轴向模拟眼对应的前房深度实际几何厚度值,mm;

 $T_{opta}$ 一被校仪器测量眼前节轴向模拟眼的前房深度光程值,mm;

 $n_{air}$ 一空气群折射率值,取值为 1。

 $\delta_{Ta}$ 一被校仪器前房深度测量误差,mm;

 $T_{0a}$ 一眼前节轴向模拟眼前房深度的标准值,mm。

注:制造商应明确给出设备测量值 Tinda 所对应的测量光程值 Topta。

#### 7.5 白到白距离或瞳孔直径测量误差

分别将 4 个眼前节横向模拟眼(对应白到白距离为 7mm 和 14mm,瞳孔直径为 1mm 和 10mm,或可根据用户需求选择其他校准点)置于人眼测量位置,被校仪器调至眼前节测量模式,重复测量 10 次,取平均为 R,被校仪器白到白距离或瞳孔直径测量误差由公式(7)计算。

$$\delta_R = R - R_0 \tag{7}$$

式中:

 $\delta_R$ 一被校仪器白到白距离或瞳孔直径测量误差,mm;

R一被校仪器白到白距离或瞳孔直径测量平均值,mm;

 $R_0$ 一眼前节横向模拟眼同心圆环直径的标准值,mm。

### 8 校准结果表达

#### 8.1 校准记录

校准记录推荐格式参见附录 A。

#### 8.2 校准结果的处理

校准证书由封面和校准数据组成。校准证书内页推荐格式见附录 B。证书上的信息至少包括以下内容:

- a) 标题: "校准证书";
- b) 实验室名称和地址;
- c) 进行校准的地点(如果与实验室地点不同);
- d) 证书的唯一性标识(如编号),每页及总页数的标识;
- e) 送校单位的名称和地址;
- f)被校对象的描述和明确标识(如型号、产品编号等);
- g) 进行校准的日期,如果与校准结果的有效性和应用有关时,应说明被校对象的接收日期;
  - h) 如果与校准结果的有效性和应用有关时,应对抽样程序进行说明;
  - i) 对校准所依据的技术规范的标识,包括名称及代号;
  - i) 本次校准所用测量标准的溯源性及有效性说明;
  - k) 校准环境的描述,如温度、湿度等;
  - 1) 校准结果及其测量不确定度的说明;
  - m) 对校准规范偏离的说明;
  - n) 校准证书测试人、审核人和签发人的签名;
  - o) 校准结果仅对被校对象有效的声明:
  - p) 未经实验室书面批准,不得部分复制证书或报告的声明。

### 9 复校时间间隔

复校时间间隔一般不超过12个月。由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所决定的,因此,送校单位可根据实际使用情况自主决定复校时间间隔。更换重要部件、维修或对仪器性能有怀疑时,应及时校准。

# 附录 A

注: 眼轴长模拟眼群折射率值:

# 校准原始记录(推荐)格式

| 送检单位            |               |                   |                         | 单位地址           |        |       |     |      |        |
|-----------------|---------------|-------------------|-------------------------|----------------|--------|-------|-----|------|--------|
| 样品名称            |               |                   |                         | 生产厂家           |        |       |     |      |        |
| 型号规格            |               |                   |                         | 出厂编号           |        |       |     |      |        |
| 校准地点            |               |                   |                         | 校准环境           | 温度     | ₹:    | ℃ 渣 | 湿度:  | %RH    |
| 校准依据            |               |                   |                         | 证书编号           |        |       |     |      |        |
|                 | 校准使用          | 的计量基              | <u></u> (†              | 示)准装置(         | 含标准    | 生物质)  |     |      |        |
| 标准器名称           | 测量剂           | 测量范围 不确定/准确度等级 证书 |                         |                |        |       |     | 证书有  | 可效期    |
|                 |               |                   |                         |                |        |       |     |      |        |
| 一、外观和工作         | 正常性检查         | Ĭ:                |                         |                |        |       |     |      |        |
| 符合要求:           |               |                   |                         | 不符合要求          | :      |       |     |      |        |
| 不符合项说           | 明:            |                   |                         |                |        |       |     |      |        |
| 二、校准结果:         |               |                   |                         |                |        |       |     |      |        |
| 1、眼轴长测量说        | 是差            |                   |                         |                |        |       |     |      |        |
|                 |               | 15                | mm 🏻                    | 艮轴长模拟眼         |        |       |     |      |        |
|                 | 仪             | 器测量值              | į (mm                   | )              |        |       | 测量  | 量平均值 | [ (mm) |
|                 |               |                   |                         |                |        |       |     |      |        |
|                 |               |                   |                         |                |        |       |     |      |        |
| 模拟眼对原           | <u></u> 立光程值( | 根据制造              | 商》                      | 则量模型换算         | ) (mm) | )     |     |      |        |
| 模拟眼标准值          | 直(mm)         |                   |                         | 模拟眼真实          | 测量     | 直(mm) |     |      |        |
| 测量误差(           | mm)           |                   |                         |                |        |       |     |      |        |
|                 |               |                   |                         | 艮轴长模拟眼         |        |       |     |      |        |
|                 | 仪             | .器测量值             | į (mm                   | )              | 1      |       | 测量  | 量平均值 | i (mm) |
|                 |               |                   |                         |                |        |       |     |      |        |
|                 |               |                   |                         |                |        |       |     |      |        |
|                 |               | 根据制造              | 首商》                     | 11量模型换算        |        |       |     |      |        |
| 模拟眼标准值          |               |                   |                         | 模拟眼真实          | 测量值    | 直(mm) |     |      |        |
| 测量误差(           | mm)           |                   |                         |                |        |       |     |      |        |
|                 |               |                   |                         | <b>艮轴长模拟眼</b>  |        |       | ·   |      |        |
| <u> </u>        |               | 器测量值              | [ (mm                   | )              | 1      |       | 测量  | 量平均值 | (mm)   |
|                 |               |                   |                         |                |        |       |     |      |        |
| L# Lat H□ → t → | ᅩᇄᄱ           | 그리 그리 쇼. 1 ) 쇼    | , <del>- , )</del> - )- | 네 티 나바 파네크셔 셔서 |        | \     |     |      |        |
|                 |               | 恨据制造              | 间测                      | 量模型换算          |        |       |     |      |        |
| 模拟眼标准值 测量误差(    |               |                   |                         | 模拟眼真实          | 测重作    | 且(mm) |     |      |        |
|                 | mm)           | l                 |                         |                |        |       |     |      |        |

被校仪器中心波长值:

| 2、角膜厚度测量误差                            |               |                    |         |           |  |  |  |  |  |
|---------------------------------------|---------------|--------------------|---------|-----------|--|--|--|--|--|
|                                       | 0.2 mm 角      | <b>)</b><br>)膜厚度模拟 |         |           |  |  |  |  |  |
| 设备测量值(mm) 测量平均值(mm)                   |               |                    |         |           |  |  |  |  |  |
|                                       |               |                    |         |           |  |  |  |  |  |
|                                       |               |                    |         | _         |  |  |  |  |  |
| 模拟眼对应光程值                              | (根据制造商》       | 则量模型换算             | ) (mm)  |           |  |  |  |  |  |
| 模拟眼标准值(mm)                            |               | 模拟眼真实              | 测量值(mm) |           |  |  |  |  |  |
| 测量误差(mm)                              |               |                    |         |           |  |  |  |  |  |
|                                       | 0.9 mm 角      | 角膜厚度模拟的            | 艮       |           |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · · | 设备测量值(mm      | 1)                 |         | 测量平均值(mm) |  |  |  |  |  |
|                                       |               |                    |         |           |  |  |  |  |  |
|                                       |               |                    |         |           |  |  |  |  |  |
| 模拟眼对应光程值                              | (根据制造商》       | 则量模型换算             | ) (mm)  |           |  |  |  |  |  |
| 模拟眼标准值(mm)                            |               | 模拟眼真实              | 测量值(mm) |           |  |  |  |  |  |
| 测量误差(mm)                              |               |                    |         |           |  |  |  |  |  |
| 注: 眼前节轴向模拟眼群排                         | 折射率值:         | 被                  | 校仪器中心波  | 安长值:      |  |  |  |  |  |
| 3、晶状体厚度测量误差                           |               |                    |         |           |  |  |  |  |  |
|                                       | 0.25 mm 晶     | 状体厚度模拟             | 以眼      |           |  |  |  |  |  |
| 访                                     | と备测量值(mm      | 1)                 |         | 测量平均值(mm) |  |  |  |  |  |
|                                       |               |                    |         |           |  |  |  |  |  |
|                                       |               |                    |         |           |  |  |  |  |  |
| 模拟眼对应光程值                              | (根据制造商》       | 测量模型换算             | ) (mm)  |           |  |  |  |  |  |
| 模拟眼标准值(mm)                            |               | 模拟眼真实              | 测量值(mm) |           |  |  |  |  |  |
| 测量误差(mm)                              |               |                    |         |           |  |  |  |  |  |
|                                       | 7.6 mm 晶      | 状体厚度模拟             | 、眼      |           |  |  |  |  |  |
| 讨                                     | と备测量值(mm      | 1)                 |         | 测量平均值(mm) |  |  |  |  |  |
|                                       |               |                    |         |           |  |  |  |  |  |
|                                       |               |                    |         |           |  |  |  |  |  |
| 模拟眼对应光程值                              | (根据制造商》       | 则量模型换算             | ) (mm)  |           |  |  |  |  |  |
| 模拟眼标准值(mm)                            |               | 模拟眼真实              | 测量值(mm) |           |  |  |  |  |  |
| 测量误差(mm)                              |               |                    |         |           |  |  |  |  |  |
| 注:眼前节轴向模拟眼群折射率值: 被校仪器中心波长值:           |               |                    |         |           |  |  |  |  |  |
| 4、前房深度测量误差                            |               |                    |         |           |  |  |  |  |  |
| 1.3 mm 前房深度模拟眼                        |               |                    |         |           |  |  |  |  |  |
| 访                                     | と备测量值(mm      | 1)                 |         | 测量平均值(mm) |  |  |  |  |  |
|                                       |               |                    |         |           |  |  |  |  |  |
|                                       |               |                    |         |           |  |  |  |  |  |
| 模拟眼对应光程值                              | (根据制造商》       | 则量模型换算             | ) (mm)  |           |  |  |  |  |  |
| 模拟眼标准值(mm)                            |               | 模拟眼真实              | 测量值(mm) |           |  |  |  |  |  |
| 测量误差(mm)                              |               |                    |         |           |  |  |  |  |  |
|                                       | 9.4 ㎜ 前房深度模拟眼 |                    |         |           |  |  |  |  |  |
|                                       | と备测量值(mm      | <u> </u>           |         | 测量平均值(mm) |  |  |  |  |  |

## JJF xxxx—xxxx

| +井+011       | 10 -1 \      | <b>小 ゼロ</b> た | + /         | 10 10 41V | operate a | ᆒᆗᆇᆒᄽᄹ    | <del>5</del> | \           |           |
|--------------|--------------|---------------|-------------|-----------|-----------|-----------|--------------|-------------|-----------|
|              | 眼对应是         |               | <u>I. (</u> | 恨 据 制 기   | 宣冏》       | 则量模型换算    |              | mm)<br>型体() |           |
| 模拟眼林         |              |               |             |           |           | 模拟眼真的     | 头侧           | 里1且(mm)     |           |
|              | 测量误差(mm)     |               |             |           |           |           |              |             |           |
|              |              |               |             |           |           |           |              |             |           |
| 5、白到白路       | 巨离测量         | 量误差           |             |           |           |           |              |             |           |
|              |              |               |             | 7         | mm É      | 1到白模拟眼    | Į            |             |           |
|              |              |               | 设           | 备测量       | 直(mm      | <u>l)</u> |              |             | 测量平均值(mm) |
|              |              |               |             |           |           |           |              |             |           |
|              |              |               |             |           |           |           |              |             |           |
| 白到白距离        | 标准值          | (mm)          |             |           |           |           |              |             |           |
| 白到白测量        | 误差(m         | m)            |             |           |           |           |              |             |           |
|              |              |               |             |           |           | 白到白模拟即    |              |             |           |
|              |              |               | 设           | 备测量       | 直(mr      | <u>l)</u> |              |             | 测量平均值(mm) |
|              |              |               |             |           |           |           |              |             |           |
|              |              |               |             |           |           |           |              |             |           |
| 白到白距离        | 标准值          | (mm)          |             |           |           |           |              |             |           |
| 白到白测量        | 误差(m         | m)            |             |           |           |           |              |             |           |
| 6、瞳孔直征       | <b>圣测量</b> 设 | 是差            |             |           |           |           |              |             |           |
|              |              |               |             | -         | 1 mm      | 瞳孔模拟眼     |              |             |           |
|              |              |               | 设           | 备测量       |           |           |              |             | 测量平均值(mm) |
|              |              |               |             |           |           |           |              |             |           |
|              |              |               |             |           |           |           |              |             |           |
| 瞳孔直径标        | 准值(m         | m)            |             |           |           | •         | •            | 1           |           |
| 瞳孔直径测        | 量误差          | (mm)          |             |           |           |           |              |             |           |
|              |              |               |             | 1         | O mm      | 瞳孔模拟眼     |              |             |           |
|              |              |               | 设           | 备测量       | 直(mm      | l)        |              |             | 测量平均值(mm) |
|              |              |               |             |           |           |           |              |             |           |
|              |              |               |             |           |           |           |              |             |           |
| 瞳孔直径标        | 准值(m         | m)            |             |           |           |           |              |             |           |
| 瞳孔直径测量误差(mm) |              |               |             |           |           |           |              |             |           |
| 其他情况备注:      |              |               |             |           |           |           |              |             |           |
| 校准日期         |              |               | 校           | 准员        |           |           |              | 核验员         |           |

# 附录 B

# 校准证书(内页)参考格式

| 4 시 코디 소    | - <b> </b>               |               | <b>** / 玉</b> - <b>-</b> |          |
|-------------|--------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1、外观和       | 工作正常性检查:                 | □符合要求 □ □ ↑ 2 | 付合要求                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 2、眼轴长       | ·测量误差:                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|             | 校准点标称值(mm)               | 测量误差(μm)      | 不确定度(µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ım)      |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 3、角膜厚       |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|             | 校准点标称值(mm)               | 测量误差(μm)      | 不确定度(p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ım)      |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 4、晶状体       | L<br><sup>x</sup> 厚度测量误差 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| - 1 нн и 11 | 校准点标称值(mm)               | 测量误差(μm)      | 不确定度(μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u> |
|             | 仅在总体体直(IIIII)            | 侧里伏左(mii)     | 了"明足汉(p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | um /     |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 5、前房深       | <b>医</b> 度测量误差           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|             | 校准点标称值(mm)               | 测量误差(μm)      | 不确定度(µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ım)      |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 6、日到日       | 1距离测量误差<br>              |               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|             | 校准点标称值(mm)               | 测量误差(μm)      | 不确定度(p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ım)      |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 7、瞳孔直       | [径测量误差                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|             | 校准点标称值(mm)               | 测量误差(μm)      | 不确定度(p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ım)      |
|             |                          | ·             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|             |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |

# 附录 C

# 眼轴长测量最大允许误差不确定度评定示例

#### C.1 概述

采用眼轴长模拟眼对眼科光学生物测量仪眼轴长参数测量误差进行校准时,对模拟眼进行 10 次重复测量取平均值作为测量结果。根据公式(C.1)计算被校仪器眼轴长测量最大允许误差。示例中,模拟眼群折射率为 1.5255,眼轴长换算模型使用的人眼眼轴平均群折射率为 1.3574(依据 ISO 22665:2012 附录 A.1.3)。

#### C.2 测量模型

$$\delta_L = \frac{L_{opt}}{n_g} - L_0 \tag{C.1}$$

式中:

 $\delta_L$ 一被校仪器眼轴长测量误差,mm;

 $L_{ont}$ 一被校仪器测量眼轴长模拟眼的光程值,mm;

 $n_g$ 一眼轴长模拟眼材料的群折射率值(被校仪器光源中心波长下);

 $L_0$ 一眼轴长模拟眼轴长的标准值,mm。

本示例中,眼轴长光程值换算模型采用 ISO 22665:2012 推荐的人眼眼轴平均群折射率乘以眼轴长测量平均值,见公式(C.2):

$$L_{opt} = L_{ind} \cdot n_{al} \tag{C.2}$$

 $L_{opt}$ 一被校仪器测量眼轴长模拟眼的光程值,mm;

 $L_{ind}$ 一眼轴长模拟眼测量显示平均值,mm;

 $n_{al}$ 一人眼眼轴平均群折射率。

注: 制造商会根据各自产品情况对测量模型进行调整。

将公式 (C.2) 代入 (C.1) 为:

$$\delta_L = \frac{L_{ind} \cdot n_{al}}{n_g} - L_0 \tag{C.3}$$

式中:

 $\delta_{L}$ 一被校仪器眼轴长测量误差,mm;

 $L_{ind}$ 一眼轴长模拟眼测量显示平均值,mm;

 $n_{al}$ 一人眼眼轴平均群折射率;

 $n_a$ 一眼轴长模拟眼材料的群折射率值(被校仪器光源中心波长下);

 $L_0$ 一眼轴长模拟眼轴长的标准值,mm。

根据测量模型,输出量为 $\delta_L$ ,输入量为 $L_{ind}$ , $n_{al}$ , $n_{a}$ , $L_0$ 共4个,其中 $n_{al}$ 为常量,

其他输入量 $L_{ind}$ , $n_g$ , $L_0$ 之间互不相关,则合成标准不确定度的计算公式可写成(C.4)

$$u_c = \sqrt{[c(L_{ind}) \cdot u(L_{ind})]^2 + [c(n_g) \cdot u(n_g)]^2 + [c(L_0) \cdot u(L_0)]^2}$$
 (C.4)

根据公式(C.3)计算公式(C.4)中的灵敏系数:

$$c(L_{ind}) = \frac{\partial \delta_L}{\partial L_{ind}} = \frac{n_{al}}{n_g}$$
$$c(n_g) = \frac{\partial \delta_L}{\partial n_g} = -\frac{L_{ind} \cdot n_{al}}{n_g^2}$$
$$c(L_0) = \frac{\partial \delta_L}{\partial L_0} = -1$$

### C.3 测量不确定度来源

- (1)输入量  $L_{ind}$ 引入的标准不确定度 $u(L_{ind})$ ,包括被校设备测量重复性引入的标准不确定度 $u_a(L_{ind})$ ;测量位置不同引入的标准不确定度 $u_b(L_{ind})$ ;测量时温度改变导致的误差不做单独分析,因为测量过程一般在 1 分钟之内,且这部分引起的测量结果变化可体现在测量重复性中。
- (2)输入量  $n_g$ 引入的标准不确定度 $u(n_g)$ ,由模拟眼标称的群折射率最大允许误差确定:
  - (3)输入量 $L_0$ 引入的标准不确定度 $u(L_0)$ ,由模拟眼标称的轴长不确定度来确定;
- C.4 标准不确定度分量评定
- C.4.1 输入量  $L_{ind}$  引入的标准不确定度
- C.4.1.1 被校设备测量重复性引入的标准不确定度分量 $u(L_{ind})$ 。

以 30 mm 轴长模拟眼为例, 重复测量 10 次, 测量结果见表 C.1

表 C.1 重复性测量结果

| 测试项目 |       | 平均值 <b>N</b> (mm) |       |       |       |        |
|------|-------|-------------------|-------|-------|-------|--------|
| 轴长   | 33.65 | 33.65             | 33.66 | 33.66 | 33.65 | 33.655 |
| 神区   | 33.65 | 33.66             | 33.66 | 33.65 | 33.66 | 33.033 |

则单次测量结果的标准差 $s(L_{ind})$ 如下:

$$s(L_{ind}) = \sqrt{\frac{\sum_{i=1}^{n} (N_i - \bar{N})^2}{n-1}} \approx 5.3 \ (\mu \text{m})$$

实际校准时测量 10 次并以 10 次的算数平均值作为结果,则测量重复性引入的标准

不确定度分量:

$$u_a(L_{ind}) = \frac{s(L_{ind})}{\sqrt{10}} \approx 1.7 \text{ (µm)}$$

# C.4.1.2 因模拟眼测量位置不同引入的标准不确定度分量 $u_b(L_{ind})$

测量眼轴长模拟眼时应尽量保证测量光与模拟眼光轴重合,但实际测量时光轴有一定范围内的偏差也能正常测量。根据实际测试经验,不同摆放位置的最大误差为 $\pm 10~\mu m$ 区间半宽度为  $10~\mu m$ ,考虑均匀分布并取包含因子 $k=\sqrt{3}$ ,由测量位置不同引入的标准不确定度分量为:

$$u_b(L_{ind}) = \frac{10}{\sqrt{3}} \approx 5.8 \ (\mu \text{m})$$

# C.4.2 输入量 $n_g$ 引入的标准不确定度

模拟眼标称的群折射率最大允许误差为 $\pm 0.001$ ,则其折射率取值的区间半宽度为0.001,考虑均匀分布并取包含因子 $k = \sqrt{3}$ ,由  $n_g$ 引入的标准不确定度分量为:

$$u(n_g) = \frac{0.001}{\sqrt{3}} \approx 0.00058$$

## C.4.3 输入量 Lo 引入的标准不确定度

模拟眼标称轴长不确定度为  $U=10 \mu m (k=2)$ ,则由  $L_0$ 引入的标准不确定度分量为:

$$u(L_0) = 5 \; (\mu m)$$

#### C.4.4 灵敏系数计算

$$c(L_{ind}) = \frac{n_{al}}{n_g} = \frac{1.3574}{1.5255} \approx 0.8898$$

$$c(n_g) = -\frac{L_{ind} \cdot n_{al}}{n_g^2} = -\frac{33.655 \cdot 1.3574}{1.5255^2} mm \approx -19.6306 mm$$

$$c(L_0) = -1$$

## C.5 标准不确定度分量汇总表

上述标准不确定度汇总见表 C.2。

表 C.2 标准不确定度汇总表

| 测量不确定度来源                    | 标准不确定度分量                    | 不确定度分量值 | 灵敏系数        |  |
|-----------------------------|-----------------------------|---------|-------------|--|
| <b>給</b> 》是1                | 被    被    被    校设备    测量重复性 |         | 0.8898      |  |
| 输入量 <i>L</i> <sub>ind</sub> | 不同测量位置误差                    | 5.8 μm  | 0.8898      |  |
| 输入量 $n_g$                   | 群折射率最大允许误差                  | 0.00058 | -19630.6 μm |  |
| 输入量 $L_0$                   | 模拟眼轴长不确定度                   | 5 μm    | -1          |  |

#### C.6 合成标准不确定度

输入量 $L_{ind}$ 的总不确定度分量可按照公式 C.5 计算:

$$u(L_{ind}) = \sqrt{u_a^2(L_{ind}) + u_b^2(L_{ind})} \approx 6.04 \,\mu\text{m}$$
 (C. 5)

带入相应数值可计算出合成标准不确定度 uc 为:

$$u_c = \sqrt{[0.8898 \cdot 6.04]^2 + [19630.6 \cdot 0.00058]^2 + [-5]^2} \,\mu\mathrm{m} \approx 13.55 \,\mu\mathrm{m}$$

# C.7 扩展不确定度

取包含因子 k=2,则扩展不确定度 U 为:

$$U = k \cdot u_c \approx 27 \,\mu\text{m}$$

# 附录 D

# 中央角膜厚度或晶状体厚度测量最大允许误差不确定度评定示例

#### D.1 概述

采用眼前节轴向模拟眼对眼科光学生物测量仪中央角膜厚度或晶状体厚度参数测量误差进行校准时,对模拟眼进行 10 次重复测量取平均值作为测量结果。由于两项参数测量方法完全一致,以中央角膜厚度测量为例说明。根据公式(D.1)计算被校仪器中央角膜厚度参数测量最大允许误差。示例中,模拟眼群折射率为 1.5255,制造商使用的人眼角膜群折射率为 1.376、晶状体群折射率为 1.420。

#### D.2 测量模型

$$\delta_T = \frac{T_{opt}}{n_g} - T_0 \tag{D.1}$$

式中:

 $\delta_T$ 一被校仪器角膜厚度测量误差,mm;

 $T_{ont}$ 一被校仪器测量眼前节轴向模拟眼的角膜厚度光程值,mm;

 $n_q$ 一模拟眼材料的群折射率值(被校仪器光源中心波长下)。

 $T_0$ 一眼前节轴向模拟眼角膜厚度的标准值,mm

本示例中,制造商角膜厚度换算模型为:

$$T_{opt} = T_{ind} \cdot n_{cct} \tag{D.2}$$

式中:

 $T_{ont}$ 一被校仪器测量眼前节轴向模拟眼的角膜厚度光程值,mm;

 $T_{ind}$ 一眼前节轴向模拟眼角膜厚度测量显示平均值,mm;

 $n_{cct}$ 一人眼角膜换算用群折射率值(制造商给出)。

将公式 (D.2) 代入 (D.1) 为:

$$\delta_T = \frac{T_{ind} \cdot n_{cct}}{n_a} - T_0 \tag{D.3}$$

式中:

 $\delta_{\tau}$ 一被校仪器角膜厚度测量误差,mm;

 $n_a$ 一模拟眼材料的群折射率值(被校仪器光源中心波长下)。

 $T_0$ 一眼前节轴向模拟眼角膜厚度的标准值,mm;

 $T_{ind}$ 一眼前节轴向模拟眼角膜厚度测量显示平均值,mm;

 $n_{cct}$ 一人眼角膜换算用群折射率值(制造商给出)。

根据测量模型,输出量为 $\delta_T$ ,输入量为 $T_{ind}$ ,  $n_{cct}$ ,  $n_a$ ,  $T_0$ 共 4 个,其中 $n_{cct}$ 为常量,

其他输入量 $T_{ind}$ , $n_g$ , $T_0$ 之间互不相关,则合成标准不确定度的计算公式可写成(D.4)

$$u_c = \sqrt{[c(T_{ind}) \cdot u(T_{ind})]^2 + [c(n_g) \cdot u(n_g)]^2 + [c(T_0) \cdot u(T_0)]^2}$$
 (D.4)

根据公式(D.3)计算公式(D.4)中的灵敏系数:

$$c(T_{ind}) = \frac{\partial \delta_T}{\partial T_{ind}} = \frac{n_{cct}}{n_g}$$
$$c(n_g) = \frac{\partial \delta_T}{\partial n_g} = -\frac{T_{ind} \cdot n_{cct}}{n_g^2}$$
$$c(T_0) = \frac{\partial \delta_T}{\partial T_0} = -1$$

## D.3 测量不确定度来源

- (1)输入量  $T_{ind}$  引入的标准不确定度 $u(T_{ind})$ ,包括被校仪器测量重复性引入的标准不确定度 $u_a(T_{ind})$ ;测量位置不同引入的标准不确定度 $u_b(T_{ind})$ ;测量时温度改变导致的误差不做单独分析,因为测量过程一般在 1 分钟之内,且这部分引起的测量结果变化可体现在测量重复性中。
- (2)输入量  $n_g$ 引入的标准不确定度 $u(n_g)$ ,由模拟眼标称的群折射率最大允许误差确定:
- (3)输入量  $T_0$ 引入的标准不确定度 $u(T_0)$ ,由模拟眼标称的厚度不确定度来确定; D.4 标准不确定度分量评定
- D.4.1 输入量 Tind 引入的标准不确定度
- D.4.1.1 被校仪器测量重复性引入的标准不确定度分量 $u(T_{ind})$ 。

以 200 μm 角膜厚度模拟眼为例, 重复测量 10 次, 测量结果见表 D.1

表 D.1 重复性测量结果

| 测试项目 |     | 平均值N (µm) |     |     |     |       |
|------|-----|-----------|-----|-----|-----|-------|
| 加上   | 225 | 226       | 226 | 224 | 225 | 225.2 |
| 轴长   | 225 | 225       | 226 | 226 | 224 | 223.2 |

则单次测量结果的标准差 $s(T_{ind})$ 如下:

$$s(T_{ind}) = \sqrt{\frac{\sum_{i=1}^{n} (N_i - \bar{N})^2}{n-1}} \approx 0.8 \ (\mu \text{m})$$

实际校准时测量 10 次并以 10 次的算数平均值作为结果,则测量重复性引入的标准 不确定度分量:

$$u_a(T_{ind}) = \frac{s(T_{ind})}{\sqrt{10}} \approx 0.2 \ (\mu \text{m})$$

## D.4.1.2 因模拟眼测量位置不同引入的标准不确定度分量 $u_h(T_{ind})$

测量模拟眼时应尽量保证测量光与角膜玻璃片前表面垂直,但实际测量时光轴有一定范围内的偏差也能正常测量。根据实际测试经验,不同摆放位置的最大误差为 $\pm 1~\mu m$ 区间半宽度为  $1~\mu m$ ,考虑均匀分布并取包含因子 $k=\sqrt{3}$ ,由测量位置不同引入的标准不确定度分量为:

$$u_b(T_{ind}) = \frac{1}{\sqrt{3}} \approx 0.6 \ (\mu \text{m})$$

# D.4.2 输入量 $n_g$ 引入的标准不确定度

模拟眼标称的群折射率最大允许误差为 $\pm 0.001$ ,则其折射率取值的区间半宽度为0.001,考虑均匀分布并取包含因子 $k = \sqrt{3}$ ,由  $n_g$ 引入的标准不确定度分量为:

$$u(n_g) = \frac{0.001}{\sqrt{3}} \approx 0.00058$$

## D.4.3 输入量 $T_0$ 引入的标准不确定度

模拟眼标称轴长不确定度为  $U=2 \mu m (k=2)$ ,则由  $T_0$ 引入的标准不确定度分量为:

$$u(T_0) = 1 \; (\mu m)$$

#### D.4.4 灵敏系数计算

$$c(T_{ind}) = \frac{n_{cct}}{n_g} = \frac{1.376}{1.5255} \approx 0.9020$$

$$c(n_g) = -\frac{T_{ind} \cdot n_{cct}}{n_g^2} = -\frac{225.2 \cdot 1.376}{1.5255^2} \mu m \approx -133.2 \ \mu m$$

$$c(T_0) = -1$$

#### D.5 标准不确定度分量汇总表

上述标准不确定度汇总见表 D.2。

表 D.2 标准不确定度汇总表

| 测量不确定度来源            | 标准不确定度分量    | 不确定度分量值    | 灵敏系数      |
|---------------------|-------------|------------|-----------|
| ⇔ λ 昙 T             | 被校仪器测量重复性   | 0.2 μm     | 0.9020    |
| 输入量T <sub>ind</sub> | 不同测量位置误差    | 提误差 0.6 μm |           |
| 输入量ng               | 群折射率最大允许误差  | 0.00058    | -133.2 μm |
| 输入量T0               | 模拟眼角膜厚度不确定度 | 1 μm       | -1        |

#### D.6 合成标准不确定度

输入量 $L_{ind}$ 的总不确定度分量可按照公式(D.5)计算:

$$u(T_{ind}) = \sqrt{u_a^2(T_{ind}) + u_b^2(T_{ind})} \approx 0.6 \,\mu\text{m}$$
 (D.5)

带入相应数值可计算出合成标准不确定度 uc 为:

$$u_c = \sqrt{[0.902 \cdot 0.6]^2 + [133.2 \cdot 0.00058]^2 + [-1]^2} \,\mu\text{m} \approx 1.1 \,\mu\text{m}$$

# D.7 扩展不确定度

取包含因子 k=2,则扩展不确定度 U 为:

$$U = k \cdot u_c \approx 2.2 \, \mu \text{m}$$

# 附录 E

# 前房深度测量最大允许误差不确定度评定示例

#### E.1 概述

采用眼前节轴向模拟眼对眼科光学生物测量仪前房深度参数测量准确性进行校准时,对模拟眼进行 10 次重复测量取平均值作为测量结果。根据公式(E.1)计算被校仪器前房深度厚度参数测量最大允许误差。示例中,制造商使用的人眼前房群折射率为1.336。

### E.2 测量模型

$$\delta_{Ta} = \frac{T_{opta}}{n_{air}} - T_{0a} \tag{E.1}$$

式中:

 $\delta_{Ta}$ 一被校仪器前房深度测量误差,mm;

 $T_{onta}$ 一被校仪器测量眼前节轴向模拟眼的前房深度光程值,mm;

 $n_{air}$ 一空气群折射率值,取值为1;

 $T_{0q}$ 一眼前节轴向模拟眼前房深度的标准值,mm。

本示例中,制造商前房深度换算模型为:

$$T_{opta} = T_{inda} \cdot n_{acd} \tag{E.2}$$

式中:

 $T_{onta}$ 一被校仪器测量眼前节轴向模拟眼的前房深度光程值,mm;

 $T_{inda}$ 一眼前节轴向模拟眼前房深度测量显示平均值, mm;

n<sub>acd</sub>一人眼前房换算用群折射率值(制造商给出)。

将公式 (E.2) 代入 (E.1) 为:

$$\delta_{Ta} = \frac{T_{inda} \cdot n_{acd}}{n_{air}} - T_{0a} = T_{inda} \cdot n_{acd} - T_{0a}$$
 (E.3)

式中:

 $\delta_{Ta}$ 一被校仪器前房深度测量误差,mm;

 $n_{air}$ 一空气群折射率值,取值为1;

 $T_{0a}$ 一眼前节轴向模拟眼前房深度的标准值,mm;

 $T_{inda}$ 一眼前节轴向模拟眼前房深度测量显示平均值,mm;

n<sub>acd</sub>一人眼前房换算用群折射率值(制造商给出)。

根据测量模型,输出量为 $\delta_{Ta}$ ,输入量为 $T_{inda}$ , $n_{acd}$ , $T_{0a}$ 共 3 个,其中 $n_{acd}$ 为常量,其他输入量 $T_{inda}$ , $T_{0a}$ 之间互不相关,则合成标准不确定度的计算公式可写成(E.4)

$$u_c = \sqrt{[c(T_{inda}) \cdot u(T_{inda})]^2 + [c(T_{0a}) \cdot u(T_{0a})]^2}$$
 (E.4)

根据公式(E.1)计算公式(E.2)中的灵敏系数:

$$c(T_{inda}) = \frac{\partial \delta_{Ta}}{\partial T_{inda}} = n_{acd}$$
$$c(T_{0a}) = \frac{\partial \delta_{Ta}}{\partial T_{0a}} = -1$$

### E.3 测量不确定度来源

- (1)输入量  $T_{inda}$ 引入的标准不确定度 $u(T_{inda})$ ,包括被校仪器测量重复性引入的标准不确定度 $u_a(T_{inda})$ ;测量位置不同引入的标准不确定度 $u_b(T_{inda})$ ;测量时温度改变导致的误差不做单独分析,因为测量过程一般在 1 分钟之内,且这部分引起的测量结果变化可体现在测量重复性中。
- (2)输入量  $T_{0a}$ 引入的标准不确定度 $u(T_{0a})$ ,由模拟眼标称的厚度不确定度来确定; E.4 标准不确定度分量评定
- E.4.1 输入量 Tinda 引入的标准不确定度
- E.4.1.1 被校仪器测量重复性引入的标准不确定度分量 $u(T_{inda})$ 。
  - 以 9.4 mm 前房深度模拟眼为例, 重复测量 10 次, 测量结果见表 E.1

表 E.1 重复性测量结果

则单次测量结果的标准差 $s(T_{inda})$ 如下:

$$s(T_{inda}) = \sqrt{\frac{\sum_{i=1}^{n} (N_i - \overline{N})^2}{n-1}} \approx 8.8 \text{ (}\mu\text{m}\text{)}$$

实际校准时测量 10 次并以 10 次的算数平均值作为结果,则测量重复性引入的标准 不确定度分量:

$$u_a(T_{inda}) = \frac{s(T_{inda})}{\sqrt{10}} \approx 2.8 \ (\mu \text{m})$$

E.4.1.2 因模拟眼测量位置不同引入的标准不确定度分量 $u_b(T_{inda})$ 

测量模拟眼时应尽量保证测量光轴与模拟眼眼轴重合,根据实际测试经验,不同摆放位置的最大误差为 $\pm 2~\mu m$  区间半宽度为  $2~\mu m$ ,考虑均匀分布并取包含因子 $k=\sqrt{3}$ ,由测量位置不同引入的标准不确定度分量为:

$$u_b(T_{ind}) = \frac{2}{\sqrt{3}} \approx 1.6 \ (\mu \text{m})$$

# E.4.2 输入量 To 引入的标准不确定度

模拟眼标称空气间隙深度不确定度为  $U=5~\mu m~(k=2)$ ,则由  $T_{0a}$  引入的标准不确定度分量为:

$$u(T_{0a}) = 2.5 \; (\mu \text{m})$$

## E.4.3 灵敏系数计算

$$c(T_{ind}) = n_{acd} = 1.336$$
$$c(T_0) = -1$$

## E.5 标准不确定度分量汇总表

上述标准不确定度汇总见表 E.2。

表 E.2 标准不确定度汇总表

| 测量不确定度来源       | 标准不确定度分量  | 不确定度分量值 | 灵敏系数  |
|----------------|-----------|---------|-------|
| 岭λ号T           | 被校仪器测量重复性 | 2.8 μm  | 1 226 |
| 输入量 $T_{inda}$ | 不同测量位置误差  | 1.6 μm  | 1.336 |
| 输入量 $T_{0a}$   | 空气隙深度不确定度 | 2.5 μm  | -1    |

## E.6 合成标准不确定度

输入量Lind的总不确定度分量可按照公式 E.5 计算:

$$u(T_{inda}) = \sqrt{u_a^2(T_{inda}) + u_b^2(T_{inda})} \approx 3.2 \,\mu\text{m}$$
 (E.5)

带入相应数值可计算出合成标准不确定度 uc 为:

$$u_c = \sqrt{[1.336 \cdot 3.2]^2 + [-2.5]^2} \,\mu\text{m} \approx 5.0 \,\mu\text{m}$$

## E.7 扩展不确定度

取包含因子 k=2,则扩展不确定度 U 为:

$$U = k \cdot u_c \approx 10.0 \, \mu \text{m}$$

# 附录F

# 白到白距离或瞳孔直径测量最大允许误差不确定度评定示例

#### F.1 概述

采用眼前节横向模拟眼对眼科光学生物测量仪白到白距离或瞳孔直径参数测量准确性进行校准时,对模拟眼进行 10 次重复测量取平均值作为测量结果。由于两项参数测量方法完全一致,以瞳孔直径测量为例说明。根据公式(F.1)计算被校仪器瞳孔直径参数测量最大允许误差。

#### F.2 测量模型

$$\delta_R = R - R_0 \tag{F.1}$$

式中:

 $\delta_R$ 一被校仪器瞳孔直径测量误差,mm;

R一被校仪器瞳孔直径测量平均值, mm;

 $R_0$ 一眼前节横向模拟眼直径的标准值,mm。

根据测量模型,输出量为 $\delta_R$ ,输入量为 R和 R且互不相关,灵敏系数分别为 1 和-1,则合成标准不确定度的计算公式可写成(F.2)

$$u_c = \sqrt{[u(R)]^2 + [u(R_0)]^2}$$
 (F.2)

#### F.3 测量不确定度来源

测试项目

轴长

- (1)输入量 R 引入的标准不确定度u(R),为被校仪器测量重复性引入的标准不确定度 $u_a(R)$ ;
- (2)输入量  $R_0$ 引入的标准不确定度 $u(R_0)$ ,由模拟眼标称直径不确定度来确定; F.4 标准不确定度分量评定
- F.4.1 被校仪器测量重复性引入的标准不确定度分量u(R)。
  - 以 10 mm 瞳孔模拟眼为例, 重复测量 10 次, 测量结果见表 E.1

测量值  $N_i$  (mm) 平均值 $\overline{N}$  (mm) 9.9 10.0 9.97 9.9 10.0 9.97

表 E.1 重复性测量结果

则单次测量结果的标准差 $s(T_{inda})$ 如下:

10.0

10.0

$$s(R) = \sqrt{\frac{\sum_{i=1}^{n} (N_i - \bar{N})^2}{n-1}} \approx 48.3 \text{ (} \mu\text{m}\text{)}$$

实际校准时测量 10 次并以 10 次的算数平均值作为结果,则测量重复性引入的标准

不确定度分量:

$$u_a(R) = \frac{s(R)}{\sqrt{10}} \approx 15.3 \; (\mu \text{m})$$

F.4.2 输入量 Ro 引入的标准不确定度

模拟眼直径的不确定度为  $U=10 \, \mu m \, (k=2)$ ,则由  $R_0$ 引入的标准不确定度分量为:

$$u(R_0) = 5 \ (\mu m)$$

F.5 合成标准不确定度

相应数值带入公式(F.2)可计算出合成标准不确定度 uc 为:

$$u_c = \sqrt{15.3^2 + 5^2} \, \mu \text{m} \approx 16.1 \, \mu \text{m}$$

F.6 扩展不确定度

取包含因子 k=2,则扩展不确定度 U 为:

$$U = k \cdot u_c \approx 32.2 \, \mu \text{m}$$