国家计量技术规范规程制修订

《高通量基因组测序系统分析性能确认和验证技术规范》 (征求意见稿) 编制说明

复旦大学 中国计量科学研究院 2025 年 09 月

一、任务来源

根据国家市场监督管理总局 2023 年国家计量技术规范制定、修订及宣贯计划(市监计量发〔2023〕56号)立项,由复旦大学、中国计量科学研究院共同承担《高通量基因组测序系统分析性能确认和验证技术规范》的制定工作。

二、规范修订的必要性

高通量测序(High-throughput sequencing),又称下一代基因测序(Next Generation Sequencing,NGS),能够在单次运行中产生百万到数十亿核酸序列读长,已逐步成为生物医学研究的重要工具。基于大规模并行测序技术,其核心是通过将DNA分子随机片段化并连接特异性接头后,固定在固体载体(如流动槽或纳米微球)表面形成空间分离的克隆簇或DNA纳米球(DNB),随后通过边合成边测序的方法实现碱基序列的读取。在测序反应中,DNA聚合酶将荧光标记的dNTP逐个掺入互补链,每轮反应仅延伸一个碱基,通过高分辨率成像系统捕获荧光信号并转化为碱基序列信息,循环重复此过程完成全序列测定。最终,海量短序列数据经生物信息学比对和组装,实现全基因组或靶向区域的高精度覆盖。

随着illumina、华大制造等国内外厂商推出多样化测序平台, NGS系统已逐步完成从科研工具向临床实验室常规检测的跨越。凭借 单次运行可产生数百 Gb 级数据的高通量优势,NGS 在显著提升检测 效率的同时,大幅摊薄了单位数据成本,现已成为生命科学研究和临 床医学实验室的"标配"设备,并在肿瘤分子分型、遗传病精准诊断等领域发挥关键作用。

高通量基因组测序测量系统的组成主要包括高通量测序建库试剂、高通量测序仪、数据分析软件、关键实验耗材等。然而各实验室在高通量基因组测序系统分析性能的验证与确认方法有较大的差异,可能会影响测量结果的准确性与可比性。制定《高通量基因组测序系统分析性能确认和验证技术规范》,将为通量基因组测序分析性能的控制提供参考,提升相关测量结果的有效性,帮助提高医疗诊断科学性与安全性。

三、《高通量基因组测序系统分析性能确认和验证技术规范》制定 过程

1. 成立起草小组

2024年1月-6月,组织成立规范起草小组,主要包括复旦大学、中国计量科学研究院参与起草,归口全国生物计量技术委员会,项目正式启动。

2. 规范起草

2024年7月-9月,起草小组对国内外相关的标准、文献和规范进行了调研,根据调研结果,起草了《高通量基因组测序系统分析性能确认和验证技术规范》初稿。

2024年9月-12月,起草小组就规范草稿中的技术指标和要求听取了与会专家的建议和意见,通过反复咨询和讨论,进行完善修改。

2025年1月-2025年8月,针对确定的技术指标和要求开始实验验证,并根据验证结果反复修改完善草稿。

3. 征求意见

2025年9月,经过起草小组的充分讨论,形成了征求意见稿。开始面向全国征求意见。

四、规范制定的主要技术依据及原则

(一) 依据

本次制订中校准规范文本结构按照JJF 1071-2010《国家计量校准规范编写规则》的要求完成,其中不确定度评定部分按照JJF 1059.1-2012《测量不确定度评定与表示》要求完成。主要性能指标参考了WS/T 505《定性测定性能评价指南》、WS/T 514《临床检验方法检出能力的确立和验证》、WS/T 416《干扰实验指南》、以及CNAS-GL039《分子诊断检验程序性能验证指南》中相关内容。

(二) 原则

1. 结构

结构按照引言、范围、引用文件、概述、确认与验证指标、工作条件、确认与验证时机、确认程序、验证程序、性能确认/验证结果表达、性能确认/验证时间间隔、附录。

2. 术语与计量单位的选择

术语和计量单位的选择遵照 JJF1001-2011《通用计量术语及定义》 选择使用。

3. 性能确认和验证指标的确定原则

根据高通量基因组测序仪的特点,确定检测系统分析性能确认和验证的主要技术指标,同时参考了WS/T 505《定性测定性能评价指南》、WS/T 514《临床检验方法检出能力的确立和验证》、WS/T 416《干扰实验指南》、以及CNAS-GL039《分子诊断检验程序性能验证指南》中相关内容。

五、规范制定说明

《高通量基因组测序系统分析性能确认和验证技术规范》包括引言、范围、引用文件、概述、验证与确认指标、工作条件、确认与验证时机、确认程序、验证程序、性能确认/验证结果表达、性能确认/验证时间间隔、附录等部分。

1. 范围

本规范适用于以人基因组DNA样品为测量对象的高通量基因测序(以下简称NGS)测量系统的分析性能确认和验证。

2. 引用文件

本规范引用了下列文件:

GB/T 30989 高通量基因测序技术规程

GB/T 35537 高通量基因测序结果评价要求

WS/T 505 定性测定性能评价指南

WS/T 514 临床检验方法检出能力的确立和验证

WS/T 416 干扰实验指南

CNAS-GL039 分子诊断检验程序性能验证指南

ISO 9000 质量管理体系-基本原则和术语

ISO 15189 医学实验室质量和能力认可则

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是 不注日期的引用文件,其最新版本适用于本规范。

3. 术语

该部分对技术规范中使用的术语进行了定义,高通量测序、确 认、验证、测量精密度、期间测量精密度、测量准确度、标准参考数 据、阳性符合率、阴性符合率、检出限、分析特异性、基因组变异 类型、变异等位基因频率、可报告范围等,相关术语与相关国家标准、 行业标准和国际标准中的术语表述一致。

4. 概述

该部分主要描述了高通量基因组测序系统的测量原理,并简要介绍了高通量基因组测序系统的组成。

5. 验证与确认指标

性能确认指标包括基因组变异类型准确度(符合率、精密度)、 检出限、分析特异性(包含干扰物质)、可报告范围(目标基因区域 和变异类型等)。性能验证指标包括基因组变异类型准确度(符合率、 精密度)、检出限、可报告范围(目标基因区域和变异类型等)。

6. 确认与验证时机

确认时机:试剂厂商研发的试剂或检测系统在正式投入使用前; 实验室自建方法时;实验室所使用的检测系统与试剂供应商所要求的 检测系统不完全一致时;任何严重影响检测系统分析性能的情况发生 后,应在检测系统重新启用前对受影响的性能部分进行确认。影响检 测系统分析性能的情况可包括但不限于更换设备型号、更换试剂原材料批号等。

验证时机:新检测系统常规应用前,新测量系统也包含现用测量系统的任一要素(仪器、试剂等)变更,如试剂升级、仪器更新、校准品溯源性改变等应按照新系统来进行验证;任何严重影响检测系统分析性能的情况发生后,应在检测系统重新启用前对受影响的性能部分进行验证。影响检测系统分析性能的情况可包括但不限于仪器主要部件故障、仪器搬迁、设施或环境的严重失控、试剂和关键耗材更换等;常规使用期间,实验室可基于分析系统的稳定性,利用日常工作产生的检验和质控数据,定期对检验程序的分析性能进行评估,应能满足检验结果预期用途的要求。

7. 确认程序

该部分主要针对高通量基因组测序系统的确认,主要针对关键指标包括文库质量、数据质量控制、基因变异类型准确度(符合率、精密度)、检出限、分析特异性(交叉反应、干扰实验)、可报告范围,进行具体操作程序的描述。与仪器的校准规范相比,本部分明确了如何对高通量基因组测序系统进行确认,用户可根据预期用途进行部分或全部引用。

8. 验证程序

该部分主要针对高通量基因组测序系统的验证,主要针对关键 指标包括基因变异类型准确度(符合率、精密度)、检出限、可报告 范围,进行具体操作程序的描述。与仪器的校准规范相比,本部分明 确了如何对高通量基因组测序系统进行验证,用户可根据预期用途进行部分或全部引用。

9. 性能确认/验证结果表达

经性能确认/验证后的高通量基因测序系统,出具性能确认/验证报告,报告内需包含确认/验证的预期用途、原始数据及结论,具体参见附录A-B。

10. 性能确认/验证时间间隔

在检测系统未发生重大变化时,性能确认无需再做。每年定期 回 顾性能参数,无重大变化时,性能验证可以回顾性分析来替代。