JJF

中华人民共和国国家计量技术规范

JJF××××—202×

微生物活菌流式计数参考方法

Reference Method for Viable Microbial Cells by Flow Cytometry

Counting

征求意见稿)

202×-××-××发布

202×-××-××实施

国家市场监督管理总局发布

微生物活菌流式计数参 考方法

Reference Method for Viable Microbial Cells by Flow Cytometry Counting $JJF \times \times \times \times -202 \times$

归 口 单 位:全国生物计量技术委员会

主要起草单位:中国计量科学研究院

广东省科学院微生物研究所

中国质量检测检验科学研究院

参加起草单位: 東國测试技术研究院

内蒙古伊利实业集团股份有限公司

本规范委托全国生物计量技术委员会负责解释

本规范主要起草人:

参加起草人:

目 录

引 言	(II)
1 范围	(1)
2 规范性引用文件	(1)
3 术语、定义和缩略语	(2)
3.1 术语和定义	(2)
3.2 缩略语	(2)
4 概述	(2)
5 测量条件	(2)
5.1 环境条件	(2)
5.2 仪器和设备	(3)
5.3 试剂和材料	(3)
6 测量流程	(4)
6.1 样品制备	(4)
6.2 样品处理	(5)
6.3 流式细胞仪测量	(6)
7 方法确认	(8)
8 不确定度的评定及表示	(8)
9 计量溯源性说明	(9)
10 方法质量控制	(9)
11 结果报告	(10)
附录 A 应用示例: 酸奶中活菌总数(即乳酸菌总数)测量((11)
附录 B 应用示例:液体培养基中大肠杆菌 O157:H7 活菌计数((14)

引 言

本规范以JJF 1071-2010《国家计量校准规范编写规则》、JJF 1001-2011《通用计量术语及定义》、JJF 1059.1-2012《测量不确定度评定与表示》和GB/T 19702-2021《体外诊断医疗器械 生物源性样品中量的测量 参考测量程序的表述和内容的要求》为指导原则,主要参考GB/T 39730-2020《细胞计数通用要求 流式细胞测定法》,18019344:2015(E)/IDF 232:2015(E)《Milk and milk products - Starter cultures, probiotics and fermented products - Quantification of lactic acid bacteria by flow cytometry》和SN/T 5436-2022《乳及乳制品发酵剂、发酵产品中乳酸菌计数 流式细胞仪法》制定。

本规范为首次发布。

微生物活菌流式计数参考方法

1 范围

本规范规定了细菌、真菌等可定量测量的微生物活菌的流式计数参考方法,适用于研究、生产和检验中使用流式细胞仪进行的样本中细菌(真菌)活菌总数测量,以及基于细菌(真菌)特性的分型计数。

2 规范性引用文件

下列文件的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

注:对于不注日期的引用文件,如果最新版本未包含所引用的内容,那么包含了所引用内容的最后版本使用。

JJF 1001 通用计量术语及定义

JJF 1265 生物计量术语及定义

JJF 1665 流式细胞仪校准规范

GB/T 19702 体外诊断医疗器械 生物源性样品中量的测量 参考测量程序的表述和内容的要求

GB/T 39730 细胞计数通用要求 流式细胞测定法

SN/T 5436 乳及乳制品发酵剂、发酵产品中乳酸菌计数 流式细胞仪法

YY/T 0588 流式细胞仪

ISO 17511 体外诊断医疗器械-建立校准物、正确度质控物和人样品赋值的计量溯源性要求(In vitro diagnostic medical devices - Requirements for establishing metrological traceability of values assigned to calibrators, trueness control materials and human samples)

ISO 19344 | IDF 232 乳及乳制品——发酵剂、益生菌和发酵产品——用流式细胞术定量乳酸菌(Milk and milk products - Starter cultures, probiotics and fermented products - Quantification of lactic acid bacteria by flow cytometry)

3 术语、定义和缩略语

3.1 术语和定义

JJF 1001、JJF 1265、GB/T 19702、GB/T 39730界定的及以下术语和定义适用于本规范。

3.1.1 流式计数 flow cytometry counting

液流中排成单列的特定生物颗粒在逐个穿越流动室的过程中受激光照射,通过检测 其散射光或者特异性荧光,来测定生物颗粒特性和数量的方法。

[来源: JJF XXX 微生物计数标准物质研制(生产)技术要求, 3.61

3.2 缩略语

下列缩略语适用于本文件。

3.2.1 FSC: 前向角散射光通道(forward scatter channel)

3.2.2 SSC: 侧向角散射光通道 (side scatter channel)

4 概述

流式计数法包括微球法和体积法两种原理。

微球法:流式细胞仪通过分析目标微生物细胞和计数标准微球的光学特性,对样本中的目标微生物细胞和计数标准微球进行区分和计数。根据目标微生物细胞和计数标准 微球数量间的比例关系,计算样本中目标微生物细胞的实际个数或浓度。

体积法:流式细胞仪通过分析目标微生物细胞的光学特性和样本体积,直接得到样本中目标微生物细胞的实际个数或浓度。

5 测量条件

5.1 环境条件

5.2.1 环境温湿度

温度: (15~30)℃;

湿度: ≤85%RH。

注:上述条件与仪器设备、试剂的使用说明不一致时,以说明为准。

5.2.2 生物安全要求

微生物活菌流式计数的测试场所、设施设备、操作活动、废物处理等,应符合 GB 19489、WS 233 等国家法律法规、标准、国际公约、条例的相关安全防护水平对生物安全管理的要求。

应根据样品中微生物危害程度,选择和采取相应级别的生物安全防护措施

5.2 仪器和设备

5.2.1 流式细胞仪

应具有荧光检测通道和散射光检测通道。荧光通道能够检测选择的荧光探针,散射光通道应包括 FSC 和 SSC。

散射光通道可识别最小 500 nm 的颗粒。

流式细胞仪应经过校准,并定期核查准确度和精密度。

5.2.2 其它仪器

5.2.2.1 温度控制装置

用于微生物荧光标记的孵育温度控制,或者试剂、样本的保存。如恒温培养箱、冰箱等。使用者应监测并记录温度控制装置的温度准确度和稳定性。

5.2.2.2 分析天平

实际分度值应不高于0.1 mg,准确度等级为特种准确度级。

5.2.2.3 微量移液器

量程为 10 μL~1000 μL。应经过检定或校准,并定期核查其移取量的准确度和精密度。

5.3 试剂和材料

5.3.1 荧光探针

也称荧光染料。选择的荧光探针应能被试验所用流式细胞仪的激光器激发,其激发光信号能被流式细胞仪的检测器接收。

5.3.2 活性表征荧光探针

根据微生物细胞的膜完整性、代谢、呼吸等生理状态,选择适宜的活性表征荧光探

针。

注:常见的活性表征荧光探针有碘化丙啶(PI)、叠氮溴化丙锭(PMA)、SYTO、cFDA、DiOC₂等。

5.3.3 特征识别荧光探针

特征识别荧光探针应对目标微生物具有特异性,能够识别并标记目标微生物的保守区域。

注:特征识别荧光探针通常分为两类。一类是识别目标微生物特征抗原的荧光抗体;类是识别目标微生物保守性核酸序列的分子荧光探针。

5.2.4 鞘液

鞘液应为无荧光本底的平衡电解质溶液,其洁净度、吸光度、pH值、渗透液应满足流式细胞仪的要求。

5.2.5 缓冲溶液

缓冲溶液不应造成待测微生物细胞的破裂、形态严重改变或者聚团,不应对待测微生物细胞的光学特性产生显著影响,不应含钙离子和镁离子。其配置方法和要求应根据 具体微生物类型。

5.2.6 计数标准微球

计数标准微球应大小均一,负载荧光物质且荧光强度一致,自发聚集度低,具有准确的数量量值与不确定度。

计数标准微球的尺寸应显著区别与待测微生物的尺寸。

为保证计数的准确和可溯源,计数标准微球的数量量值应溯源至有证标准物质。

6 测量流程

6.1 样品制备

6.1.1 样品的采集、贮存和运输

- a) 应根据原始样品类型(如固体、液体、半固体)、检测目标微生物的特性(如好氧/厌氧)及预期浓度,采集足量且有代表性的样品。样品量需满足检测方法的灵敏度要求。
- b) 采样后,应将样品在接近原有贮存温度条件下尽快送往实验室检验,运输时应保持样品完整。如不能及时运送,应根据样品实际情况选择适宜条件贮存。

- c)运输条件(如温度、湿度、避光性)不宜影响待测微生物的生物特性和检测结果。 注:通常在运输微生物样品时,宜在容器中添加冰袋来保持低温条件。
- d) 涉及病原微生物或感染性物质的样品,其包装和运输应满足现行有效的《病原微生物实验室安全管理条例》、世界卫生组织《感染性物质运输指南》及国际民航组织《危险性物品航空安全运输技术细则》等要求。
- 注 1: 包装材料和运输容器通常应符合防水、防破损、防外泄、耐高(低)温、耐高压,能承受在-40℃至+55℃温度范围内 95 kPa 的内部压力而无渗漏的要求。
- 注 2: 标签、包装及运输容器上通常印有国务院卫生主管部门或者兽医主管部门规定的生物危险标识、警示语和提示语。

6.1.2 样品中微生物的分离

- a) 根据原始样品的类型,选择适合的分离方式,制备得到分析样品。分析样品应是单分散的微生物菌悬液,即分析样品中的微生物以单个菌体的形式存在。
- b) 如原始样品为固体,称取适量样品,加入含有缓冲溶液的无菌均质袋中均质; 如原始样品为粉末或流体,称取适量样品溶于缓冲溶液。随后可采用离心、过滤、化学消解等方式,将微生物菌体从样品中分离出来,得到分析样品。

6.2 样品处理

6.2.1 样品稀释

根据原始样品中微生物的预期浓度,必要时对分析样品进行稀释,使上机样品达到 流式计数法的最佳测量范围。

注:样品稀释可采用十倍系列稀释法进行。用 1 mL 移液器吸取分析样品 1 mL,沿管壁缓慢注于盛有 9 mL 的 PBS 的无菌试管中,充分混匀后制成 1:10 的样品匀液;重复上一步操作,制备 10 倍系列稀释的样品匀液。每递增稀释一次,换用一次 1 mL 无菌吸头。

6.2.2 荧光探针标记

- 根据荧光探针的自身特性确定样本用量、探针用量和标记条件。
- b)标记完成后,应尽快上机检测。若无法尽快上机,可在适当条件避光保存。

6.2.3 添加计数标准微球

- a) 计数标准微球仅适用于微球法原理的流式计数。
- b) 应采用反向抽吸法,向装有上机样品的进样管中加入充分混匀的计数微球标准溶液。轻度吹打混匀,避免产生泡沫。

- c)样品添加计数标准微球后,应避免离心洗涤导致微球丢失。
- d) 处理完成后应尽快上机检测,上机前充分混匀,避免微生物细胞和微球沉降。
- 注:若使用涡旋振荡器进行样品混匀,应选择适宜的涡旋转速和时间,转速过高或时间过长都可能使微球吸附管壁。
 - e) 宜对被测样本和计数标准微球的移取量进行精确称量,提高测量准确度和精密度。

6.3 流式细胞仪测量

6.3.1 仪器参数设置

流式细胞仪开机并调试完毕后,吸取适量的计数标准微球进行测试,以设置仪器参数。具体步骤如下:

- a)将FSC通道的阈值设置为适当值以排除杂质碎片。
- b)根据计数标准微球在FSC、SSC通道及预期荧光通道的信号强弱,调整电压(Voltage)、增益(Gain)和增幅类型(线性或对数),使得标准微球的散射光和荧光信号出现在通道适宜位置,且与杂质信号分开。
- c)调整进样流速(Flow rate)、进样体积(Sample volume)和最大颗粒事件率(Event rate),使标准微球的计数信号呈平稳态势。
 - 注:不同型号的流式细胞仪,可根据自身使用说明书进行参数设置。

6.2.2 目标微生物的圈门

流式细胞仪圈门策略通常包括以下步骤:

- a) FSC和SSC两个散射光通道,能够确定颗粒物的大小和内部结构的复杂程度,从而初步判断颗粒物的类型。在FSC-SSC双参数散点图中,根据目标微生物的大小,从群落中初步圈出并建立包含目标微生物的圈门R1。采用基于微球法原理进行流式计数时,还应根据计数标准微球的信号强度和粒径,圈出并建立计数标准微球的圈门R0。
- b) 目标微生物通常被活性表征荧光探针和特征识别荧光探针同步标记。根据两类荧光探针的工作原理,判断目标微生物携带的荧光信号,并建立"荧光通道1-荧光通道2"的双参数散点图。
- c)在"荧光通道1-荧光通道2"双参数散点图中,设置事件来源为圈门R1,并根据预期,建立目标微生物的圈门R2。

6.2.3 数据采集

a) 应在进样稳定后开始采集信号。

- b)总细胞信号采集数量不应小于10000,计数标准微球信号采集数量不应小于1000。若总细胞信号采集数量为10000时,计数标准微球的采集数量不足1000,则应增加总细胞信号采集数量。
 - c) 信号采集时间应保持在合理范围内,过长时间可能导致细胞或微球的沉降。

6.2.4 结果计算

6.2.4.1 体积法

进样管中目标微生物的计数结果直接来源于体积法流式细胞仪。由仪器专用软件, 根据目标微生物的圈门R2的事件数,以及分析体积直接计算生成。

可根据进样管中目标微生物的浓度,结合稀释倍数等因子,计算得到分析样品或原始样品的结果。

6.2.4.2 微球法

在进样管中,目标微生物的数量与计数微球数量的比值,应与流式细胞仪输出结果中二者事件数的比值相等。因此,微球法的计数结果直接来源于计数标准微球。

可以通过公式(1)计算进样管中目标微生物的浓度,并进一步结合稀释倍数等因子,计算得到分析样品或原始样品的结果。

$$\frac{C_{target}}{C_0 \cdot V_0} = \frac{N_{target}}{N_0} \tag{1}$$

式中,

 C_{target} —进样管中目标微生物浓度, mL^{-1} ;

 C_0 ——进样管中计数标准微球的浓度, mL^{-1} ;

V——进样管中加入的样品匀液的体积, mL;

 V_0 进样管中加入的计数标准微球的体积,mL;

Narger 目标微生物的圈门R2的事件数,无量纲;

 N_0 计数标准微球的圈门R0的事件数,无量纲。

6.2.4.3 数值修约

通常,按照GB/T 8170数值修约规则将计算出的结果保留至两位有效数字,将结果记录为1.0~9.9乘以10的指数幂表示,单位为mL⁻¹。必要时,结果可保留三位有效数字,将结果记录为1.00~9.99乘以10的指数幂表示,单位为mL⁻¹。

7 方法确认

应对具体测量方法进行方法性能确认。方法性能参数通常包括准确度、精密度、工作范围(检出限、定量限、测量上限等)、特异性和组间精密度(如操作者间、仪器间和日间变化)等。

应建立评估方法性能参数的方案和标准,制定并保存相应的文件。

8 不确定度的评定及表示

测量结果的合成标准不确定度表示为:

$$u_{c}[y(x_{1}, x_{2}, \dots, x_{n})] = \sqrt{\sum_{i=1}^{n} c_{i}^{2} u^{2}(x_{i})^{2}}$$
(2)

其中, $y(x_1, x_2, \dots, x_n)$ 为几个参数 x_1, x_2, \dots, x_n 的函数, c_i 为灵敏系数(当各不确定度分量互不相关时,灵敏系数为1)。

流式计数法测量样品的微生物数量时,测量结果的不确定度来源包括:(1)微生物流式计数(FCM)引入的相对标准不确定度 $u_{rel}(FCM)$;(2)样品稀释(d)引入的相对标准不确定度 $u_{rel}(d)$;(3)荧光标记过程中样品、试剂和计数标准微球的体积(V)引入的相对标准不确定度 $u_{rel}(V)$;(4)计数标准微球(beads)的浓度引入的相对标准不确定度 $u_{rel}(beads)$,仅限于微球法流式计数。各输入量的不确定度来源及评定方法见表1。

流式计数法测量结果的相对扩展不确定度表示为:

$$U_{rel} = u_{rel} \cdot k \quad (k=2)$$

表 1 测量结果的不确定度来源及评定

输入量的 标准不确 定度	不确定度来源	类型	数值	単位	标准不 确定度	灵敏系 数
	圈门形状	A		无量纲		
$u_{rel}(FCM)$	目标微生物计数的重复性	A		mL ⁻¹		
	计数器	В		无量纲		
	样本分析速度	В		μL/min		
	上样时间	В		min		
$u_{rel}(d)$	待稀释样品体积	В		mL		
	稀释液体积	В		mL		
	稀释次数	В		无量纲		

$u_{rel}(V)$	样品体积	В	μL	
	试剂体积	В	μL	
	计数标准微球体积	В	μL	
$u_{rel}(beads)$	计数标准微球的浓度	В	mL ⁻¹	

9 计量溯源性说明

流式计数法已被 ISO 17511 认定为具有溯源性的原级参考测量程序;其在国际计量局(BIPM)国际计量委员会物质的量咨询委员会(CCQM)细胞分析工作组(CAWG)2021-2030战略报告中,被认定为潜在的高等级微生物测量方法。

微生物细胞个数虽不能用国际单位制的七个基本单位表示,但具有计数的性质。通过适当的、经过确认的流式计数法可建立计数到 SI 单位的溯源性。

10 方法质量控制

10.1 样品采集

采样时应充分考虑样品的均匀性和代表性。对于不均匀的样品,采样量应足够大以囊括预期变化。

- 10.2 流式细胞仪维护和质控。
- a)流式细胞仪应由经过培训的专业技术人员操作和维护。每次使用时应确保激光器 光路正对仪器流动室,并采用标准微球进行日常质量控制。
 - b) 宜采用适合的微生物计数国家有证标准物质,验证方法的可靠性。
 - 注: 可使用 "GBW(E)091310 活菌总数流式和平板计数标准物质"验证方法的可靠性。

10.3 二聚体和多聚体的识别与处理

样品中的微生物菌体可能会团聚黏连,形成二聚体乃至多聚体,影响测量结果的准确性。可使用FSC (Peak)-FSC (Area) 双参数散点图识别上机样品中是否存在二聚体或多聚体。对于单个细菌菌体,FSC (Peak)-FSC (Area) 通道的信号强度呈正比;而二聚体和多聚体通过激光时,产生的电子脉冲振幅宽度远超高度,会出现明显偏离线性的情况。建议使用移液器对分析样品进行吹打,可有效减少二聚体和多聚体的产生。

10.4 气泡

样品和仪器管路中应避免出现气泡,因为气泡会扭曲光路,干扰检测。

11 结果报告

报告提供的信息应至少包括:

- a)样品的完整信息,包括基本信息、采样策略、贮存和运输、分离方法等。
- b) 流式细胞仪的完整信息,包括基本信息、参数设置等。
- c) 关键试剂名称、来源、批号等。
- d)测量结果,包括圈门策略图、原始数据、数据分析程序等
- e) 意外情况。

附录 A

应用示例:酸奶中活菌总数(即乳酸菌总数)测量

A.1 样本信息

原始样品为酸奶,仅含有保加利亚乳杆菌和嗜热链球菌两种乳酸菌。酸奶中活菌总数即为其乳酸菌总数。每克酸奶中活菌总数大于 10⁹。

A.2 仪器和设备

A.2.1 流式细胞仪

微球法流式细胞仪,型号为 Calibur,来自美国 BD 公司

激发源的激发波长为 488 nm, 功率为 20 mW。

散射光检测器为 FSC 和 SSC; 荧光检测器为 FL1 (530 nm ± 20 nm)、FL2 (580 nm ± 15 nm) 和 FL3 (630 nm ± 15 nm)。

A.2.2 其它

恒温培养箱、冰箱、pH计、分析大平、涡旋震荡仪、移液器。

A.3 试剂和材料

A.3.1 碘化丙啶(PI)工作液

将 100 mg 的 PI 溶于 100 mL 去离子水中,得到终浓度为 1 mg/mL (约 1.5 mmol/L) 的 PI 溶液,可在 (1 5) ℃下避光储存 6 个月。

A.3.2 STYO 9 工作液

STYO 9 膜穿透性绿色荧光核酸染料。该试剂通常浓度为 5 mmol/L,溶于 DMSO。可在 20°C P避光储存 12 个月。使用前应用去离子水稀释至 0.1 mmol/L。

A.3.3 磷酸盐缓冲溶液 (PBS)

注: PBS 中可添加 1 mmol/L 的乙二胺四乙酸 (EDTA)、0.01%的吐温 20 或 0.1%的吐温 80, 提升微生物细胞的分散程度。

A.3.4 流式计数标准微球

粒径 $5.5 \,\mu\text{m}$,大小均一,发绿色荧光且强度均一;浓度 $2.0 \times 10^7 \,\text{mL}^{-1}$,扩展不确定度为 10% (k=2) 。

A.4 样品处理

A.4.1 采集、运输

酸奶样品整盒采集并运输回实验室,混匀后开启。

A.4.2 微生物的分离

称取25 g的样品,置于装有225 mL的PBS的无菌锥形瓶中,涡旋振荡混匀,得到稀释因子为1:10的样品匀液。

用移液器吸取 1:10 的样品匀液 1 mL,沿管壁缓慢注于盛有 9 mL 的 PBS 的无菌试管中,反复吹打使其混合均匀,制成 1:100 的样品匀液。

A.4.3 荧光标记

A.4.3.1 荧光标记原理

SYTO 9能够穿透微生物细胞膜,将核酸标记绿色荧光。PI仅能穿透细胞膜受损的微生物,将核酸标记红色荧光。当两种染料都存在时,核酸会优先与PI结合,从而降低SYTO 9带来绿色荧光。因此,具有完整细胞膜的活菌发绿色荧光,细胞膜轻微受损的细菌同时发绿色和红色荧光,细胞膜破裂的死菌发红色荧光。

A.4.3.2 荧光标记步骤

吸取100 μL的样品匀液(1:100)和780 μL的PBS,置于1.5 mL规格的离心管,然后分别吸取10 μL的PI工作液和10 μL的SYTO 9工作液加入样品匀液,充分混匀后(36±1)℃下避光孵育15 min。

A.4.3.3 计数标准微球添加

使用移液器通过反向吸液,向离心管中加入混匀的计数标准微球100 μL。轻度吹打混入,避免产生泡沫。混匀后应尽快进行上机检测。

A.5 流式细胞仪测试

流式细胞仪开机并调试完毕后,对荧光标记的样品进行检测。仪器圈门与采样策略如下:

a)在FSC-SSC散点图中,从群落中圈出并建立包含计数标准微球的圈门R0和包含所

有乳酸菌的圈门R1。

- b)在FSC-FL2散点图中设置事件来源为R1,并建立具有荧光信号的乳酸菌的圈门R2。
- c)在FL1-FL3散点图设置事件来源为R2,并建立活菌圈门R3、非活菌(受损菌和死菌)圈门R4和背景颗粒圈门R5。
 - d) 圈门完成后, 仪器开始采集数据。圈门R3中应收集到至少10000个事件。

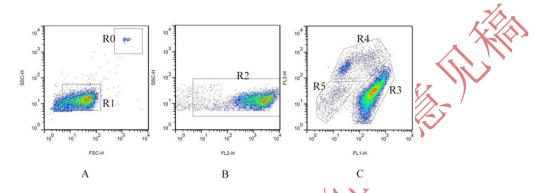


图 A.1 微球法流式细胞仪圈门策略

A.6 结果计算

根据流式细胞仪FSC-SSC散点图中圈门R0,以及FL1-FL3散点图中圈门R3和R4,按照公式(A.1)和(A.2)计算分析样品中的乳酸菌活菌总数 C_{viable} 和乳酸菌总数 C_{total} 。

$$v_{iable} = \frac{N_3 \cdot C_B \cdot V_B}{N_0 \cdot V \cdot d} \tag{A.1}$$

$$C_{total} = \frac{(N_3 + N_4) \cdot C_B \cdot V_B}{N_0 \cdot V \cdot d}$$
(A.2)

式中,

 C_{viable} 分析样品中乳酸菌活菌总数, g^{-1} ;

Ctotal 分析样品中乳酸菌总数, g-1;

 C_{b} 计数标准微球的浓度(可通过微球说明书得到), mL^{-1} ;

W——FSC-SSC散点图中圈门R0中计数标准微球的事件数,无量纲;

 N_3 ——FL1-FL3散点图中圈门R3中活菌的事件数,无量纲;

N4——FL1-FL3散点图中圈门R4中非活菌的事件数,无量纲;

d——分析样品的稀释因子;

 V_B ——进样管中添加的计数标准微球的体积, $100~\mu L$ 。

V——进样管中添加的样品匀液的体积,100 μL。

附录 B

应用示例:液体培养基中大肠杆菌O157:H7活菌计数

B.1 样本信息

原始样品为液体培养基,仅含有大肠杆菌 O157:H7。原始样品为营养肉汤培养基接种大肠杆菌 O157:H7 的单菌落后,经(36 ± 1)°C培养 10 小时所得。每毫升培养基中大肠杆菌 O157:H7 的数量大于 10^8 。

B.2 仪器和设备

B.2.1 流式细胞仪

体积法流式细胞仪,型号为 A50-Micro,来自英国 Apogee 公司

激发源的激发波长为 488 nm, 功率为 20 mW。

散射光检测器为 FSC 和 SSC; 荧光检测器为 488Grn (520 nm ± 20 nm) 和 488Red (630 nm ± 15 nm)。

B.2.2 其它

恒温培养箱、冰箱、pH计、分析表平、涡旋震荡仪、移液器。

B.3 试剂和材料

B.3.1 碘化丙啶(PI)工作液

将 100 mg 的 PI 溶于 100 mL 去离子水中,得到终浓度为 1 mg/mL(约 1.5 mmol/L)的 PI 溶液,置于 (1) 5) °C下避光储存。

B.3.2 荧光抗体(FITC-Ab)工作液

大肠杆菌 0157 单克隆抗体,浓度为 1 mg/mL,抗体 Fc 段偶联有异硫氰酸荧光素 FITC 。 避光保存于 $4^{\circ}C$ 。

B.3.3 磷酸盐缓冲溶液(PBS)

称取 9 g 氯化钠(NaCl),795 mg 七水合磷酸氢二钠(Na₂HPO₄·7H₂O),144 mg 磷酸二氢钾(KH₂PO₄),加蒸馏水至 $1\,000\,\text{mL}$ 。用 $0.1\,\text{mol/L}$ 的盐酸调节 pH 至 7.4 ± 0.05 。随后在(121 ± 1)°C下高压灭菌 $15\,\text{min}$,冷却后备用。

注: PBS 中可添加 1 mmol/L 的乙二胺四乙酸 (EDTA)、0.01%的吐温 20 或 0.1%的吐温 80, 提升微生物细胞的分散程度。

B.4 样品处理

B.4.1 采集、运输

原始样品为营养肉汤培养基,在实验室内培养获得。无需样本采集和运输。

B.4.2 微生物的分离

吸取1 mL的样品,置于装有9 mL的PBS的无菌试管中,涡旋振荡混匀,得到稀释因子为1:10的样品匀液。

用移液器吸取 1:10 的样品匀液 1 mL,沿管壁缓慢注于盛有 9 mL 的 PBS 的无菌试管中,反复吹打使其混合均匀,制成 1:100 的样品匀液。

B.4.3 荧光标记

B.4.3.1 荧光标记原理

FITC-Ab通过特异性识别大肠杆菌O157:H7,将菌体标记录色荧光。PI仅能穿透细胞膜受损的微生物,将其核酸标记红色荧光。当两种探针都存在时,具有完整细胞膜的活菌仅发绿色荧光,细胞膜破裂或受损的非活菌同时发绿色和红色荧光。

B.4.3.2 荧光标记步骤

吸取980 μL的样品匀液(1:100)于1.5 mL规格的离心管,然后分别吸取10 μL的PI工作液和10 μL的FITC-Ab工作液加入样品匀液,充分混匀后(36±1)℃下避光孵育15 min。

B.5 流式细胞仪测试

流式细胞仪开机并调试完华后,对荧光标记的样品进行检测。仪器圈门与采样策略如下:

- a)在FSC-SSC散点图中,从群落中圈出并建立包含所有细菌的圈门R1。
- c)在488Grn-488Red散点图设置事件来源为R1,并建立活菌圈门R2、非活菌(受损菌和死菌)圈门R3。
 - d) 圈门完成后, 仪器开始采集数据。圈门R2中应收集到至少10000个事件(events)。

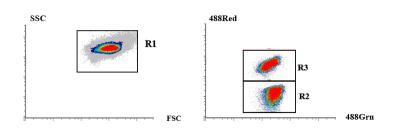


图 B.1 体积法流式细胞仪圈门策略

B.6 结果计算

根据流式细胞仪488Grm-488Red散点图中圈门R2,按照公式(B.1)计算分析样品中的大肠杆菌O157:H7活菌总数 C_{viable} 。

$$C_{viable} = C_2 \cdot \frac{(V + V_1 + V_2)}{d \cdot V}$$
(B.1)

式中,

 C_{viable} ——分析样品中大肠杆菌O157:H7活菌总数, mL^{-1} ;

 C_2 —488Grn-488Red散点图中圈门R2中活菌的浓度, mL^{-1} ;

V——进样管中添加的样品匀液的体积,980 μL;

 V_I ——进样管中添加的PT工作液的体积,10 μ L;

 V_2 ——进样管中添加的FITC-Ab工作液的体积,10 μL;

d——分析样品的稀释因子。